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Abstract
Generation of entanglement between two qubits by scattering an entanglement
mediator is discussed. The mediator bounces between the two qubits and
exhibits a resonant scattering. It is clarified how the degree of the entanglement
is enhanced by the constructive interference of such bouncing processes.
Maximally entangled states are available via adjusting the incident momentum
of the mediator or the distance between the two qubits, but their fine tunings are
not necessarily required to gain highly entangled states and a robust generation
of entanglement is possible.

PACS numbers: 03.67.Mn, 03.65.Xp, 03.65.Nk, 72.10.−d

1. Introduction

Entanglement plays an essential role in the ideas of quantum information, like quantum
computation, quantum communication, quantum cryptography and so on [1]. Efficient
generation of entanglement hence constitutes an essential element for the realization of such
ideas, and various schemes have been proposed. Entanglement would be most simply and
naturally generated by a direct interaction between two entities carrying quantum information
[2], i.e. between two qubits. There are, however, several setups in which the two qubits are
separated from each other, beyond the range of the direct interaction, but an entanglement
is to be shared between them. In such a case, a ‘mediator’ would be convenient to entangle
the separated qubits, and several schemes have been investigated theoretically [3–11] and
experimentally [12, 13].

Among these proposals, we here concentrate on a scheme based on the ‘successive’
interactions of a mediator with two qubits to be entangled [6–13]. Mediator X prepared in a
specific state is sent to interact successively one by one with qubits A and B, each of which is
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prepared in an appropriate initial state, and then the state of X is measured. If X is found in a
specific state after the interactions, we end up with an entanglement between A and B.

It has been somewhat standard in such schemes to assume that mediator X interacts
with qubit A(B) for a certain time duration τA(B) [6–10, 12], and the generation of a highly
entangled state with a high probability is accomplished by tuning these times, given the
coupling constants. It is, however, a subtle problem whether the notion of the ‘interaction
time’ makes sense or not. It might be valid when the size of a wave packet is small enough
compared with the interaction region, but it might not be otherwise. Even in the former
case, no rigorous proof has been given explicitly so far, to the best of the present authors’
knowledge.

A rigorous approach to this issue would be to formulate it as a scattering problem and
such attempts have recently appeared [10, 11]. Qubits A and B are shown to be entangled after
scattering mediator X. In this approach, the notion of the interaction time is not necessary;
actually, such a time is either absent in the stationary-state treatments or automatically given
by the physical situation under consideration in the wave-packet scatterings [14]. At this
point, it is worth noting that X can be reflected by each of the qubits with a certain probability.
This effect is not taken into account in the standard formulations with the interaction times.
The wave reflected by B is partially directed to A and some of its portion is reflected back
to B. Such a sequence of bounces between A and B gives rise to a resonant scattering of
mediator X.

The purpose of the present work is to clarify the effects of the 1D resonant scattering on the
entanglement generation3: resonance can enhance the degree of entanglement. It is revealed
that the distance d between the two qubits is an important parameter to gain an entanglement
efficiently, and maximally entangled states are available with finite probabilities by adjusting
d or the incident momentum k of X, in a wide parameter region of the coupling constants.
Fine tunings of k or d, however, are not necessarily required and robust generation of highly
entangled states is possible.

2. Scattering of a monochromatic wave

We consider the following Hamiltonian in 1D space:

H = p2

2m
+ gA

(
σ (X)

+ σ
(A)
− + σ

(X)
− σ (A)

+

)
δ(x + d/2) + gB

(
σ (X)

+ σ
(B)
− + σ

(X)
− σ (B)

+

)
δ(x − d/2). (1)

Qubits A and B are placed at x = −d/2 and d/2, respectively, and the quantum information
is encoded in their spin states |↑〉A(B) and |↓〉A(B), which are flipped by the ladder operators
σ

(A(B))
∓ . A and B are initially prepared in |↑↑〉AB and mediator X polarized in |↓〉X is injected

from the left. X, whose position and momentum are represented by the operators x and p,
respectively, propagates according to the Hamiltonian (1) and is scattered by A and B (figure 1).
Since the interactions between mediator X and qubits A, B preserve the number of spins in
the up state |↑〉 among A, B, and X, if X after the scattering is detected by either of the
two detectors on both sides and found in |↑〉X, either state of A or B is flipped down and an
entangled state is generated (see (13a) and (13b) below). (Possible entanglement generation
without resolving the spin state of X by the detector will be discussed in section 6.) Note

3 The resonance effect is not clarified in [10]. In fact, the distance between the two scatterers, d, is not contained
in the formulae in [10], while it is the important parameter for the resonance. Reference [11] briefly discusses the
entanglement generation in the same system as that discussed in section 5 of this paper, but the parameter kd (which
is kx0 in [11]) is fixed at kd = νπ(ν = 1, 2, . . .), and the effect of the resonant scattering on the entanglement
generation is not fully clarified.
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−d/2 d/2

gA gB

x

X

Figure 1. Mediator X prepared in |↓〉X is scattered by qubits A and B placed at x = −d/2 and d/2,
respectively, and initialized in |↑↑〉AB, and |↑〉X is to be detected by either of the two detectors on
both sides, with a certain probability.

that we are looking at an extreme case where the potential barriers are much thinner than the
extension of the wave packet of X.

Let us find a scattering state of the Hamiltonian (1),

H |E〉 = E|E〉, (2)

which would describe the scattering of a well-mono-chromatized incident particle X. We
introduce the wavefunctions

u↓;↑↑(x) = (
X〈x↓| ⊗ AB〈↑↑|)|E〉 ≡ 〈x↓; ↑↑|E〉, etc. (3)

The solution is given in the form

u(x) =
{

Ieik(x+d/2) + Re−ik(x+d/2) (x < −d/2),

T eik(x−d/2) (x > d/2)
(4)

for each spin state, where k is the momentum (apart from h̄) of X and E = h̄2k2/2m.
We are interested in the entanglement generation from the initialized state |↑↑〉AB by

injecting X in the spin state |↓〉X. In such a case, only the three wavefunctions u↓;↑↑(x),
u↑;↑↓(x) and u↑;↓↑(x) are involved in the problem. Imposing the continuity condition on the
wavefunctions, the scattering problem (2) is solved under the boundary conditions

I↓;↑↑ = 1, I↑;↑↓ = 0, I↑;↓↑ = 0 (5)

to yield the transmission and reflection amplitudes

T↓;↑↑ = tAtB eikd

1 − rArB e2ikd
, (6a)

R↓;↑↑ = rA +
t2
ArB e2ikd

1 − rArB e2ikd
, (6b)

T↑;↑↓ = R↑;↑↓ e−ikd = tAfB eikd

1 − rArB e2ikd
, (6c)

T↑;↓↑ = R↑;↓↑ eikd =
(

1 +
tArB e2ikd

1 − rArB e2ikd

)
fA eikd , (6d)

where

tA(B) = 1

1 + �2
A(B)

, rA(B) = − �2
A(B)

1 + �2
A(B)

, (7a)

fA(B) = − i�A(B)

1 + �2
A(B)

, (7b)
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and �A(B) = mgA(B)/h̄
2k. Note that X is not affected by A(B) when they are in the same spin

states. The coefficients tA(B) and rA(B) respectively describe the transmission through and the
reflection from A(B) without spin flip and fA(B) the transmission/reflection with spin flips,
when X is in a different spin state from A(B).

It is interesting to expand the amplitudes in (6a)–(6d) as power series in e2ikd :

T↑;↑↓ = R↑;↑↓ e−ikd

= tA eikd(1 + rB eikdrA eikd + rB eikdrA eikdrB eikdrA eikd + · · ·)fB, (8a)

T↑;↓↑ = R↑;↓↑ eikd

= (1 + tA eikdrB eikd + tA eikdrB eikdrA eikdrB eikd + · · ·)fA eikd , (8b)

etc., where eikd represents the phase factor gained for the rightwards/leftwards propagation
of X between A and B, and each term of the expansions reveals how X goes back and forth
between A and B, before flipping its spin by the interaction with A or B.

It is also worth looking at the coefficients tA(B), rA(B) and fA(B) for the single potential
A(B) and comparing the present approach with the ordinary formulation with the interaction
times [6–10, 12]. When we concentrate on a transmitted particle (like in the approach with
the interaction time), a state of X and A, e.g. |↓; ↑〉XA, is ‘rotated’ after the transmission of X
through potential A like

|↓; ↑〉XA → tA|↓; ↑〉XA + fA|↑; ↓〉XA, (9)

apart from the normalization. The counterpart in the approach with the interaction time reads
[8, 9]

|↓; ↑〉XA → cos gAτA|↓; ↑〉XA − i sin gAτA|↑; ↓〉XA, (10)

and there exists the connection between the two formulations:

cos gAτA ↔ 1√
1 + �2

A

, sin gAτA ↔ �A√
1 + �2

A

. (11)

These relations show that gAτA ranges from 0 to π/2 and a higher/lower momentum
corresponds to a shorter/longer interaction time.

In practise, however, one should also take account of the probability for such event,
transmission, to occur. To achieve the complete flip sin gAτA = 1, for instance, the
correspondence (11) suggests that �A → ∞ is required. But the probability of the
transmission

|tA|2 + |fA|2 = 1

1 + �2
A

(12)

vanishes in this limit, meaning that the complete flip is not possible. A larger rotation
angle gAτA requires a larger �A but it is available with a smaller probability. This restricts
the applicability of the formulation with the interaction times, at least for the delta-shaped
potential.

3. Generation of entanglement

Now we are ready to discuss the entanglement generation. If a transmitted/reflected particle
in |↑〉X is detected by the detector on the right/left, an entangled state

|�t〉AB ∝ T↑;↑↓|↑↓〉AB + T↑;↓↑|↓↑〉AB (13a)
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(for the former case) or

|�r〉AB ∝ R↑;↑↓|↑↓〉AB + R↑;↓↑|↓↑〉AB (13b)

(for the latter) is established. In the present model, the concurrences [15] of these states are
the same,

C = 2|T↑;↑↓T↑;↓↑|
|T↑;↑↓|2 + |T↑;↓↑|2 = 2|R↑;↑↓R↑;↓↑|

|R↑;↑↓|2 + |R↑;↓↑|2 = 2a

1 + a2
, (14a)

a =
∣∣∣∣T↑;↓↑
T↑;↑↓

∣∣∣∣ =
∣∣∣∣R↑;↓↑
R↑;↑↓

∣∣∣∣ = �A

�B

√
1 + 4�2

B

(
1 + �2

B

)
sin2 kd, (14b)

and so are the probabilities of the generations of the entangled states (13a) and (13b), namely
the probability of detecting a transmitted particle in the |↑〉X state and that of detecting a
reflected one,

P = |T↑;↑↓|2 + |T↑;↓↑|2 = |R↑;↑↓|2 + |R↑;↓↑|2

= �2
A + �2

B + 4�2
A�2

B

(
1 + �2

B

)
sin2kd(

1 + �2
A + �2

B

)2
+ 4�2

A�2
B

(
1 + �2

A

)(
1 + �2

B

)
sin2kd

. (15)

Note that the probability of either of the two detectors detecting X in the state |↑〉X is given
by 2P , and therefore the maximal value of P is 1/2.

Note here that the distance between the two qubits, d, enters the formulae through the
exponential factor e2ikd , which is responsible for the resonant scattering. See figure 2, where
the resonance structures are observed in the momentum dependences of the concurrence C and
the probability P. An apparent feature is that the oscillations of C and P are out of phase: one
can see a trade-off between C and P. But still, a highly entangled state is generated with a finite
(non-vanishing) probability. At the same time, fine tunings of parameters are not necessarily
required. For example, let us look at a case where gA = gB. Figure 2(c) shows that C and P
do not oscillate strongly for large k and a high concurrence is available in a wide range of the
incident momentum k. This is because the oscillating factor e2ikd represents the bouncing of
X between A and B and it always accompanies the reflection coefficients rA and rB, which are
reduced for large momentum k and suppress the oscillations.

Let us look more closely at the formulae and see how a highly entangled state is acquired
by the resonant tunnelling. Figure 2(d) shows that the series expansions in (8a) and (8b)
converge very quickly and the first two contributions, i.e. the no- and one-bounce processes,
are important. For gA = gB, the no-bounce process, i.e. the first terms in (8a) and (8b),
yields |T↑;↑↓| < |T↑;↓↑| (|R↑;↑↓| < |R↑;↓↑|). If the momentum k is adjusted so as to satisfy
kd = νπ(ν = 1, 2, . . .), the one-bounce process, i.e. the second terms in (8a) and (8b),
interferes with the no-bounce process constructively for the |↑; ↑↓〉 component but
destructively for the |↑; ↓↑〉 component (since tA(B) > 0 while rA(B) < 0). As a result,
the difference between |T↑;↑↓| and |T↑;↓↑| (|R↑;↑↓| and |R↑;↓↑|) is reduced by the interference
and the concurrence is made close to unity. In fact, the ratio a introduced in (14b) is evaluated
up to the one-bounce contribution to be a = 1 + δa = 1 + �6/(1 + 2�2 + 2�4) under the
conditions gA = gB and kd = νπ(ν = 1, 2, . . .), and the deviation of the concurrence
from unity is about (δa)2/2, which is very small for �(= �A = �B) � 1 (almost perfect
compensation). Other processes with more bounces complete the exact unit concurrence.
Note that, in figure 2(c), where gA = gB = 3[h̄2π/md], the condition � � 1 corresponds to
k � 3[π/d].
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Figure 2. (a) The concurrence C given in (14a)–(14b) and (b) the probability P given in (15) as
functions of k and gA when gB = 3[h̄2π/md]. (c) The concurrence C (solid) and the probability
P (dashed) as functions of the incident momentum k when gA = gB = 3[h̄2π/md]. (d) The same
as (c) but only the contributions up to the (n + 1)th term in each of the series expansions (8a)
and (8b) are taken into account, where n is the number of bounces between A and B.

(This figure is in colour only in the electronic version)

4. Optimization

Let us next survey the whole parameter space and discuss how to optimize the concurrence
C in (14a)–(14b) and the probability P in (15). There are essentially three independent
(dimensionless) parameters �A(B) = mgA(B)/h̄

2k and kd.
We first look at the probability (15). It is possible to show that it is optimal for a given

pair (�A,�B) when the resonance condition

sin2kd = 1 (16)

is satisfied. The probability P under this condition is plotted in figure 3(a) as a function of �A

and �B, together with the concurrence C. The maximum value of the probability P is given by

Pmax = 1
2 at (�A,�B) = (1/

√
2,∞), (17)

while the unit concurrence C = 1 under the resonance condition (16) is achieved when

�A = �B

1 + 2�2
B

. (18)
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Figure 3. (a) Contour plots of the probability P (dashed) given in (15) and the concurrence C
(solid) given in (14a)–(14b) as functions of �A and �B under the resonance condition sin2kd = 1.
The probability P takes its maximum value Pmax = 1/2 at (�A,�B) = (1/

√
2,∞), and the

concurrence is unity C = 1 on the line �A = �B/(1 + 2�2
B). (b) Contour plots of the

optimal concurrence C for given (�A,�B) (solid) and the corresponding probability P (dashed)
as functions of �A and �B. The unit concurrence C = 1 is available in the grey region
�B/(1 + 2�2

B) � �A � �B. In the left region �A � �B/(1 + 2�2
B), the concurrence C is

optimal when sin2kd = 1, and in the right region �A � �B, it is optimal when sin2kd = 0. The
optimal probability P for the unit concurrence C = 1 is realized at the point indicated by a dot,
(�A, �B)  (0.33, 1.07), and is given by Popt  0.37.

If one does not stick to a high probability, the concurrence C is optimized as follows. The
concurrence (14a)–(14b) takes its maximum C = 1 at a = 1 and decreases monotonically as
a leaves this optimal point. Since

�A

�B
� a � �A

�B

(
1 + 2�2

B

)
(19)

for a given pair (�A,�B), the unit concurrence C = 1 (i.e. a = 1) requires

�A

�B
� 1 � �A

�B

(
1 + 2�2

B

)
, sin2kd = �2

B − �2
A

4�2
A�2

B

(
1 + �2

B

) . (20)

See figure 3(b), where the region for the unit concurrence C = 1 is shown, together with the
corresponding probability P. In particular, the unit concurrence C = 1 is always available
when gA = gB, by adjusting the incident momentum k or the distance between the two qubits,
d. The optimal probability P for the unit concurrence C = 1 is realized at the point indicated
by a dot in figure 3(b), which is evaluated to be

Popt  0.37 (21a)

at

�B =
√

1 +
3
√

37 − 3
√

114 +
3
√

37 + 3
√

114

6
 1.07, (21b)

�A = �B

1 + 2�2
B

 0.33, sin2kd = 1. (21c)
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5. Another model

Similar analyses are possible for the Hamiltonian

H = p2

2m
+ gAσ(X) · σ(A)δ(x + d/2) + gBσ(X) · σ(B)δ(x − d/2). (22)

This type of interaction is considered in [10, 11] and would have physical applications. In this
case, the amplitudes are given by

T↓;↑↑ = t̃A t̃B eikd

1 − r̃Ar̃B e2ikd
, (23a)

R↓;↑↑ = r̃A +
t̃2
Ar̃B e2ikd

1 − r̃Ar̃B e2ikd
, (23b)

T↑;↑↓ = t̃A eikd

1 − r̃Ar̃B e2ikd
fB

(
1 +

r ′
AtB e2ikd

1 − r ′
ArB e2ikd

)
, (23c)

R↑;↑↓ = t̃A eikd

1 − r̃Ar̃B e2ikd
fB

t ′A eikd

1 − r ′
ArB e2ikd

, (23d)

T↑;↓↑ =
(

1 +
t̃Ar̃B e2ikd

1 − r̃Ar̃B e2ikd

)
fA

t ′B eikd

1 − rAr ′
B e2ikd

, (23e)

R↑;↓↑ =
(

1 +
t̃Ar̃B e2ikd

1 − r̃Ar̃B e2ikd

)
fA

(
1 +

tAr ′
Be2ikd

1 − rAr ′
B e2ikd

)
, (23f )

with

tA(B) = 1 − i�A(B)

(1 + i�A(B))(1 − 3i�A(B))
, (24a)

rA(B) = i�A(B)(1 + 3i�A(B))

(1 + i�A(B))(1 − 3i�A(B))
, (24b)

fA(B) = − 2i�A(B)

(1 + i�A(B))(1 − 3i�A(B))
, (24c)

t ′A(B) = 1

1 + i�A(B)

, r ′
A(B) = − i�A(B)

1 + i�A(B)

, (24d)

and

t̃A(B) = tA(B) + �A(B), r̃A(B) = rA(B) + �A(B), (25a)

�A(B) = f 2
A(B)r

′
B(A)e

2ikd

1 − rA(B)r
′
B(A) e2ikd

. (25b)

In contrast to the previous model, X is affected by potential A(B) even when X is in the
same spin state as A(B). t ′A(B) and r ′

A(B) are the coefficients for the transmission through and
the reflection from the single potential A(B) without spin flip when X is in the same spin
state as A(B), tA(B) and rA(B) are those when X is in a different spin state from A(B), and
fA(B) describes the transmission and the reflection with spin flip when X is in a different spin
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Figure 4. The concurrences (above: (a), (c)) and the probabilities (below: (b), (d)) for the
Hamiltonian (22) as functions of k and gA with gB = 1.5[h̄2π/md], when a reflected particle is
detected (left: (a), (b)) and when a transmitted particle is detected (right: (c), (d)).
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Figure 5. The concurrences (solid) and the probabilities (dashed) for the Hamiltonian (22) as
functions of the incident momentum k with gA = gB = 1.5[h̄2π/md], when a reflected particle is
detected (a) and when a transmitted particle is detected (b).

state from A(B). For this model, the concurrence Ct and the probability Pt by detecting a
transmitted particle in |↑〉X on the right are different from Cr and Pr by detecting a reflected
one on the left. Again, the denominators in (23a)–(23f ) and (25b) represent bouncing of
X between A and B (which becomes clear by expanding them as power series in e2ikd ) and
give rise to the resonant tunnelling. Similar resonance structures to the previous example
are observed in the concurrences and the probabilities, as shown in figures 4 and 5. The
oscillations of the concurrences and the probabilities are reduced for a large momentum k and
a robust entanglement generation is available (figure 5), due to the same mechanism as in the
previous example.
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Figure 6. The concurrences (above: (a), (c)) and the probabilities (below: (b), (d)) for the
Hamiltonian (22) as functions of k and gA with gB = 1.5[h̄2π/md], when a reflected particle (left:
(a), (b)) or a transmitted one (right: (c), (d)) is detected regardless of its spin state.

6. Entanglement generation without resolving the spin state of X

In the above schemes, the entangled state (13a) or (13b) is generated by detecting a transmitted
or reflected particle in the spin state |↑〉X. Such a detector that is able to resolve the spin state of
the scattered particle is required and might be difficult to implement in practise. Fortunately,
however, a (not maximally but) highly entangled state is still available by just detecting a
transmitted or reflected particle without resolving its spin state.

A reflected particle is detected on the left (regardless of its spin state) with probability

P̃r = |R↓;↑↑|2 + |R↑;↑↓|2 + |R↑;↓↑|2 (26)

and we end up with a state of A and B,

ρr ∝ |R↓;↑↑|2|↑↑〉↑↑AB + (R↑;↑↓|↑↓〉AB + R↑;↓↑|↓↑〉AB)(R∗
↑;↑↓AB〈↑↓| + R∗

↑;↓↑AB〈↓↑|).
(27)

This is a mixed state unlike (13b), but still a certain amount of entanglement is created between
A and B, which is evaluated by the concurrence [15]

C̃r = 2|R↑;↑↓R↑;↓↑|
|R↓;↑↑|2 + |R↑;↑↓|2 + |R↑;↓↑|2 . (28)

Similar formulae for the state ρt, the concurrence C̃t, and the probability P̃t are available
for the detection of a transmitted particle on the right. Note the conservation of probability
P̃t + P̃r = 1.

It is apparent that the concurrences C̃t and C̃r are less than those by the spin-resolved
detections, (14a)–(14b), while the probabilities P̃t and P̃r are greater than the counterparts
in (15). Let us look at them in detail for the model analysed in section 5. Figures 6 and 7 show
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Figure 7. The concurrences (solid) and the probabilities (dashed) for the Hamiltonian (22) as
functions of the incident momentum k with gA = gB = 1.5[h̄2π/md], when a reflected particle
(a) or a transmitted one (b) is detected regardless of its spin state.

that a highly entangled state (although not maximally entangled) is generated with a finite
probability just by detecting a scattered particle (especially, a reflected one) without resolving
its spin state.

Note that the contributions of the processes with one reflection to the reflection
amplitudes (23b), (23d) and (23f ) read R↓;↑↑ ∼ i�A, R↑;↑↓ ∼ −2i�B e2ikd , and R↑;↓↑ ∼
−2i�A for large incident momentum k, and hence, C̃r ∼ 8�A�B

/(
5�2

A + 4�2
B

)
(=8/9 if

�A = �B). Large concurrence is available for large momentum k and is enhanced more by
the resonance, as figure 7(a) shows. This result would promise a physical implementation of
the scheme with a less restrictive requirement on the detector.

7. Summary

In this paper we have investigated the entanglement generation by the resonant scattering. The
resonance effects are clarified and the optimization of the entanglement generation is discussed.
The interference of the bouncing and non-bouncing processes can enhance entanglement.
Maximally entangled states are available with finite probabilities in a wide parameter region.
The degree of entanglement is optimized by adjusting the momentum of the mediator, but its
fine tuning is not necessarily required. Furthermore, it has been clarified that the detectors
without spin resolution can be used for the entanglement generation.

One of the interesting future subjects would be to clarify the effect of the size of a wave
packet on the generation of entanglement. Scattering of plane waves is discussed in this
paper, but the models are solvable also for wave packets [14]. It is possible to discuss the
resonant scattering fully dynamically. Introduction of the width of the potential would also be
interesting to explore the validity of the ordinary formulation with the interaction times.
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